
1

UNIX essentials (hands-on)

• overview: Unix, tcsh, AFNI

• the directory tree

• basic shell commands (class practice)

• running programs

• the shell (using the T-shell)

→ command line processing

→ special characters

→ command types

→ shell, array and environment variables

→ wildcards

→ shell scripts

→ shell commands

→ pipes and redirection

• OS commands

• special files

2

• Overview: Unix, T-shell, AFNI

→ Unix

• a type of operating system (a standard), first developed in 1969

• examples: Solaris, OpenSolaris, Irix, AIX, HP-UX, OS X, Linux, FreeBSD

 actually, Linux and FreeBSD are not Unix compliant, but are very similar
• has graphical environment, but a strength is in command-line capabilities
• hundreds of commands, minimum, thousands on most systems

→ tcsh (T-shell)

• a Unix shell: a command-line interpretter

 when user types a command and hits Enter, the shell processes that command

• just one of the common Unix programs (a single file: /bin/tcsh)

• other Unix shells: sh, bash, csh, ksh, zsh

• has own syntax and sub-commands
• not as powerful as bash, but more simple and readable

→ AFNI
• a suite of data analysis tools
• more than 450 programs, scripts and plugins
• free and open source

3

• Overview: Unix, T-shell, AFNI - separate commands and syntax

→ Unix : sample commands and syntax
• commands: ls, cat, less, mv, cp, date, ssh, vi, rm
• syntax: variables ($), quotes (', ", `), wildcards (*, ?, []),

 pipes (|), redirection (>)

• comments: part of any Unix-based system (e.g. Solaris, Linux, OS X)

 command help from 'man' pages (or a book), e.g. man less

→ tcsh (T-shell) : sample commands and syntax
• commands: cd, set, setenv, if, foreach, alias, history
• syntax: home directories (~), history (!), jobs (%), redirecting stderr (>&)

• comments: single installed program, command help from 'man tcsh' (or a book)

→ AFNI : sample commands and syntax
• commands: afni, suma, 3dcalc, afni_proc.py, 3dDeconvolve
• syntax: sub-brick selection ([$]) - note: these characters appear elsewhere
• comments: installed suite of programs, command help from -help output

 e.g. afni_proc.py -help

 e.g. afni_proc.py -help | less

4

• The Directory Tree (the organization of the file system)

→ directories contain files and/or directories

→ / : means either the root directory, or a directory separator

• consider /home/afniuser/AFNI_data6 SurfData/SUMA

 getting to SurfData/SUMA requires starting from suma_demo

→ an "absolute" pathname begins with '/', a "relative" pathname does not

• a relative pathname depends on where you start from

→ every directory has a parent directory

• the relative pathname for the parent directory is '..'

 what does "cd .." do?

• the relative pathname for the current directory is '.'

 what does "cd ." do?

• consider "./run_this_script", "cp ~/file .", "ls ../suma_demo"

→ many commands can be used to return to the home directory (of "afniuser")

• cd, cd /home/afniuser, cd $HOME, cd ~, cd ~afniuser

 note the 2 special characters, '~' and '$'

→ while you work, keep your location within the directory tree in mind

5

Basic Shell Commands: open a terminal window and practice

1. Upon opening a new terminal window, what directory am I in? (pwd)

2. Approximately how many files and directories are here? (ls, ls -l, ls -al)

3. How big are these programs (as files): tcsh, afni, .cshrc, s11.proc.FT?

ls -l /bin/tcsh, ls -l abin/afni, ls -l .cshrc,

 cd AFNI_data6/FT_analysis, ls -l, wc s11.proc.FT

4. The last 2 are actually scripts, look at them. (cat, gedit, nedit)

5. What polynomial order is used for the baseline in 3dDeconvolve in s11.proc.FT?

Search for "polort" in the 3dDeconvolve command. (less s11.proc.FT)

(consider keystrokes in less: Enter, Space, b, g, G, h, /, n, N, q

--> down line, page, up page, go to top, bottom, help, search, next, next-up, quit)

6. Why are the line continuation characters ('\') useful? (less s11.proc.FT)

--> for readability, note: must be LAST character on line

7. How many runs of EPI data were used? (search for 3dTcat)

8. What are the arguments to the within() function in 3dcalc?

3dcalc -help | less (use '/' and 'n' to search for occurances of 'within')

9. If we run afni, how can we still type commands (without opening another terminal)?

(ctrl-z, bg) (also try: afni &)

6

• Running Programs
→ a program is something that gets "executed", or "run"

→ the first element of a command line is generally a program (followed by a space)

→ most shells are case sensitive when processing a command

→ command examples (options usually start with a '-') :
 /bin/ls $HOME/AFNI_data6

 count -digits 2 1 10

→ script: an interpreted program (interpreted by some other program)
• e.g. shell script, javascript, perl script, afni startup script

• recall: less ~/AFNI_data6/FT_analysis/s11.proc.FT

→ create a script (text file) containing a few commands: (gedit my.script)
echo “hello there”
ls -a
count 7 11

→ execute the script in a few ways
tcsh my.script
bash my.script
./my.script
chmod 755 my.script

./my.script <--- script should start with '#!/bin/tcsh', for example

7

• The Shell (focusing on the T-shell)
→ a shell is a command interpreter (case and syntax sensitive)

→ examples: tcsh, csh, sh, bash, ksh, zsh, wish, tclsh, rsh, ssh

→ command: echo $0

→ the T-shell: /bin/tcsh

• an enhanced C-shell (csh), which has C programming style syntax

• Command Line Processing (simplified outline):
1) evaluate special characters, such as: ~ $ & * ? \ ' " ` |

2) decide which program to execute (more on this later)

• absolute pathname? alias? shell command? in the $path?

3) execute appropriate program, passing to it the parameter list

4) save the execution status in the $status variable (0 is considered success)

→ tcsh has automatic filename completion using the Tab key

• type "ls suma" and hit the Tab key, watch what happens, and hit Enter

• type "ls AF" and hit the Tab key, note what happens

• note: this requires setting the shell variable, filec

8

• Special Characters (some of them, and some of their uses)

~ : the current user's home directory (e.g. /home/afniuser), same as $HOME

$: used to access a variable (e.g. $path)

& : used to put a command in the background (e.g. afni &)

* : wildcard, matching zero or more characters (e.g. echo AFNI_da*)

? : wildcard, matching exactly one character (e.g. ls AFNI_data?)

\ : command line continuation (must be the last character on the line)

' : the shell will not evaluate most special characters contained within these quotes

 (e.g. echo '$HOME' : will output $HOME, not /home/afniuser)

 (e.g. 3dbucket -prefix small_func 'func_slim+orig[0,2..4]')

" : the shell will evaluate $variables and `commands` contained within these

 (e.g. echo "[*] my home dir is $HOME")

 (e.g. echo "the numbers are 'count 7 12'")

` : execute the command contained within these quotes, and replace the quoted

 part with the output of the contained command

 (e.g. echo "the numbers are `count 7 12`")

9

• Command Types
→ the shell must decide what type of command it has:

• pathname for a program: execute that program
• alias: apply any alias(es) then start over (decide on which program to run)

• shell command: part of the /bin/tcsh program

• check the $PATH directories for the program

→ consider the commands:
/bin/ls AFNI_data6/afni

ls AFNI_data6/afni

cd AFNI_data6/afni

wc ~/AFNI_data6/afni/epi_r1_ideal.1D

→ the "which" command shows where the shell gets a command from:
which ls which cd which wc

• Shell Variables: The PATH Variable
→ a list of directories to be searched for a given program to be run from

→ the $path and $PATH variables are identical, but are represented differently

→ commands: echo $PATH

echo $path

cat ~/.cshrc

10

• Shell Variables
→ shell variables are variables that are stored in, and affect the shell

→ all variables are stored as strings (or as arrays of strings)

→ a variable is accessed via the '$' character

→ the 'echo' command: echo the line after processing any special characters

• command: echo my home dir, $HOME, holds ~/*

→ the 'set' command: set or assign values to one or more variables

• without arguments: 'set' displays all variables, along with any values

• 'set' takes a list of variables to set, possibly with values

• consider the commands:

set food
echo $food
set food = pickle
echo $food
set food eat = chocolate donut (emphasis: food eat = chocolate donut)
set
set food = eat chocolate donut
set food = "eat chocolate donut"
echo $food

11

→ variables can be assigned the result of a numerical computation using the '@'
command, however only integer arithmetic is allowed

• commands: set value1 = 17

 @ value2 = $value1 * 2 + 6

 echo value2 = $value2

• Array Variables
→ array variables are set using ()

→ consider the commands:

set stuff = (11 12 13 seven 15)
echo $stuff
echo $stuff[1]
echo $stuff[2-4]
echo $stuff[8]
set stuff = (hi $stuff $food)
echo $stuff
echo $path
cat ~/.cshrc

12

• Environment Variables

→ similar to shell variables, but their values will propagate to children shells

→ by convention, these variables are all upper-case (though it is not required)

→ similarly, shell variables are generally all lower-case

→ set environment variables using "setenv" (as opposed to the "set" command)

→ without any parameters, the "setenv" command will display all variables

→ the "setenv" command will only set or assign one variable at a time

→ the format for the command to set a value is (without any '=' sign):

setenv VARIABLE value

• commands:
setenv MY_NAME Elvis

echo $MY_NAME

echo $path

echo $PATH

echo $HOME

setenv

13

• Wildcards
→ used for shell-attempted filename matching

→ special characters for wildcards:

*, ?, [,], ^

* : matches any string of zero or more characters

 (special case: a lone * will not match files starting with '.')

? : matches exactly one character

[] : matches any single character within the square brackets

[^] : matches any single character EXCEPT for those within the brackets

→ commands (run from the AFNI_data6/EPI_run1 directory):
ls
ls *
ls -a
ls 8*3.dcm
ls 8*0*3.dcm
ls 8*00?3.dcm
ls 8*00[23].dcm
ls 8*00[^23].dcm

14

• Shell Scripts
→ a text file, a sequence of shell commands
→ the '\' character can be used for line continuation (for readability)

• for that purpose, it must be the last character on the line (including spaces)
→ executing shell scripts, 3 methods:

1) ./filename : (safest) execute according to the top "#!program"
 if no such line, usually executed via bash (a potential error)
 the file must have execute permissions (see 'ls -l', 'chmod')

2) tcsh filename : execute as t-shell commands

3) source filename : execute using current shell
 affects current environment
 this method should be used only when that is the intention (e.g. .cshrc)

→ recall ~/AFNI_data6/FT_analysis/s11.proc.FT

→ create a script (text file) called my.script containing a few commands

→ recall: execute the script in a few ways
tcsh my.script
bash my.script
./my.script
chmod 755 my.script

./my.script <--- script should start with '#!/bin/tcsh', for example

15

• Some Shell Commands (handled by the shell)

cd : change working directory

pwd : display the present working directory

set : set variables or assign string values to variables

@ : set a variable to the results of an integral computation

alias : display or create an alias

 (e.g. alias hi 'echo hello there')

bg : put a process in the background (usually after ctrl-z)

fg : put a process in the foreground

exit : terminate the shell

setenv : set environment variables

source : execute a script within the current shell environment

• special keystrokes (to use while a process is running)

ctrl-c : send an interrupt signal to the current process

ctrl-z : send a suspend signal to the current process

16

• More Shell Commands: basic flow control
→ commands: if, else, endif, while, end, foreach

if ($user == "elvis") then
 echo 'the king lives'
endif

set value = 5
set fact = 1
while ($value > 0)

 @ fact = $fact * $value
 @ value -= 1
end
echo 5 factorial = $fact

foreach value (1 2 3 four eight 11)
 echo the current value is $value
end

foreach file (I.*3)
 ls -l $file
end

17

• Pipes and Redirection
> : redirect program output (stdout) to a file

 e.g. 3dmerge -help > 3dmerge.help

 3dmerge -pickle > 3dmerge.help

>& : redirect all output (both stdout and stderr) to a file

 e.g. 3dmerge -pickle >& 3dmerge.pickle

 e.g. tcsh my.script >& script.output

>> : append program output to a file

 e.g. echo "remember to feed the cat" >> script.output

| : pipe standard output to the input of another program

 e.g. 3dDeconvolve -help | less

|& : include stderr in the pipe

 e.g. tcsh -x my.big.script |& tee script.output
• run the script (echo commands to terminal before executing)
• send all output to the tee program
• the tee program duplicates its input, sending the output to both

the terminal and the given file (script.output)
• you can see the output, but it is also stored for future analysis

18

• Some OS Commands
 ls : list the contents of a directory

* cat : concatenate files to the terminal (print them to the screen)

* more : a file perusal program - view files one page at a time

* less : a better file perusal program (type less, get more)

 echo : echo command to terminal window

 man : on-line manuals for many OS commands (and library functions)

 - this uses a "less" interface to display the information

 - e.g. consider man on : ls, less, man, tcsh, afni

* head : display the top lines of a file (default = 10)

 - e.g. 3dinfo func_slim+orig | head -25

* tail : display the bottom lines of a file (default = 10)

 - e.g. tail ideal_r1.1D

* wc : word count - count characters, words and lines (of a file)

 cp : copy files and directories to a new location

 mv : rename a file, or move files and direcotories

 rm : remove files and/or directories (BE CAREFUL - no recovery)

 - e.g. rm junk.file

 - e.g. rm -r bad.directory

* denotes a 'filter' program, which can take input from a file or from stdin

19

* grep : print lines from a file that match the given pattern

 e.g. grep path ~/.cshrc

 e.g. ls ~/abin | grep -i vol

 e.g. from the output of "3dVol2Surf -help" show lines which

 contain 'surf', but not 'surface', then remove duplicates:

3dVol2Surf -help | grep surf | grep -v surface | sort | uniq

• Some Special Files (in the home directory)
.cshrc : c-shell startup file ("csh run commands")

 set aliases
 adjust the path
 set shell and environment variables

.afnirc : AFNI startup file

.sumarc : suma startup file

.login : commands run at the start of a login shell (e.g. a terminal window)

.logout : commands run before exiting a login shell

.bashrc : bash startup file (in case bash your login shell)

	UNIX essentials (hands-on)
	PowerPoint Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

